

Welcome to Game AI’s documentation!

GameAI contains a series of well-defined abstractions that are common in AI, such as a games, agents, and trainers which optimize the behavior of agents. As long as a class inherits from the base implemetation of a primitive (e.g. Agent) and implements the required methods, it can be used in place of the standard implementations given.

Getting Started:

	Getting Started
	Installation

	Basic Example

API Reference:

	Core

	Agents

	Games

	Algorithms

Getting Started

Installation

Because this is still in alpha and under active development, it has not been released to PyPi. You can install via TestPyPi using the following command:

pip install --index-url https://test.pypi.org/simple/ gameai

Basic Example

from gameai.games import TicTacToe
from gameai.agents import RandomAgent, MCTSAgent
from gameai.core import Arena, Player

Create our game
game = TicTacToe()

Inititalize our agents
mcts_agent = MCTSAgent()
random_agent = RandomAgent()

We train the mcts agent
mcts_agent.train(game, verbose=True, num_iters=10000, num_episodes=100)

player0 = Player(0, mcts_agent)
player1 = Player(1, random_agent)

Pit the agents against eachother in the arena. Note that the player
ids passed in need to match the index of the player in the array
arena = Arena(game, [player0, player1])
arena.play_games(verbose=True)
arena.statistics()

Core

Core contains the primitives for playing a game between two players.

	
class core.Player(player_id, agent)

	Player is a simple abstraction whose policy is defined by the
agent that backs it. Agents learn the optimal play for each player,
while players are only concerned about the optimal play for
themselves

	
player_id

	int – The id of the player

	
agent

	Agent – The agent associated with the player

	Raises

	ValueError – If the id is not 0 or 1

	
action(g, s, flip)

	Take an action with the backing agent. If the starting player is
not 0, then we invert the board so that the starting player is still
0 from the perspective of the agent

	Parameters

	
	g (Game) – The game the player is playing

	s (any) – The state of the game

	flip (bool) – Whether or not to flip the state so that the agent
thinks that player 0 started the game. This is necessary since
trainable agents like MCTSAgent operate under the assumption that
player 0 always starts

	Returns

	The index of the action the player will take

	Return type

	int

	
class core.Arena(game, players)

	Place where two agents are pitted against eachother in a series of games.
Statistics on the win rates are recorded and can be displayed.

	
game

	Game – The game that is being played

	
players

	list – List of Player objects. Note that there should only be two, and
the ids of the player should map to the index of the player in the array.

	
games_played

	int – The number of games played in the arena

	
wins

	list – List of two integers representing the number of wins of each player,
with the index being the id of the player

	
play_game(verbose=False)

	Play a single game, doing the necessary bookkeeping to maintain
accurate statistics and returning the winner (or -1 if no winner).

Note

We always have the start with player being 0 from the persepctive
of the agent. Because of this we pass in a flip boolean to
the player class in the action method, which flips the board and
makes it seems as though player 0 started, even if it was actually
player 1

	Parameters

	verbose (bool) – Whether or not to print the output of the game.
Defaults to false

	Returns

	The winner of the game

	Return type

	int

	
play_games(**kwargs)

	Play a series of games between the players, recording how they did
so that we can display statistics on which player performed better

	Parameters

	
	num_episodes (int) – The number of games to play, defaults to 10

	verbose (bool) – Whether or not to print output from each game.
Defaults to false

	
statistics()

	Print out the statistics for a given series of games.

	
class core.Game

	Game class, which is extended to implement different types of adversarial,
zero sum games. The class itself is stateless and all methods are actually
static.

	
action_space(s)

	For any given state returns a list of all possible valid actions

	Parameters

	s (any) – The state of the game

	
flip_state(s)

	Invert the state of the board so that player 0 becomes player 1

	Parameters

	s (any) – The state of the game

	
initial_state()

	Return the initial state of the game

	
next_state(s, a, p)

	Given a state, action, and player id, return the state resulting from the
player making that move

	Parameters

	
	s (any) – The state of the game

	a (int) – The action for the player to take

	p (int) – The player to get the next state for

	
reward(s, p)

	Returns the reward for a given state

	Parameters

	
	s (any) – The state of the game

	p (int) – The player to get the reward for

	
terminal(s)

	Returns whether a given state is terminal

	Parameters

	s (any) – The state of the game

	
to_hash(s)

	Returns a hash of the game state, which is necessary for some algorithms
such as MCTS

	Parameters

	s (any) – The state of the game

	
to_readable_string(s)

	Returns a pretty-formatted representation of the board

	Parameters

	s (any) – The state of the game

	
winner(s)

	Returns the winner of a game, or -1 if there is no winner

	Parameters

	s (any) – The state of the game

Note: There are two types of agents, agents that are trainable and agents that are not. If an agent is trainable then it inherits from the TrainableAgent class and must implement all of the members defined below. For example, MCTSAgent is a trainable agent, while MinimaxAgent is not.

	
class core.Agent

	An agent class which exposes a method called action. Given a certain
state of a game and the player that is playing, the agent retuns the
best action it can find, given a certain heuristic or strategy

	
action(g, s, p)

	Given a game, a state of the game, return an action

	Parameters

	
	g (Game) – The game the agent is competing in

	s (any) – The state of the game

	p (int) – The current player (either 0 or 1)

	Returns

	The index of the action within the returned action space

	Return type

	int

	
class core.TrainableAgent

	Class that extends the functionality of a normal agent. This is necessary
because agents are bound to a particular player, but for some algorithms
the agent is really being trained to play optimally for both plays, so we
have this class house the training data and then pass it into the agents
when they are instantiated to avoid duplicated work

	
train(g, **kwargs)

	Train the agent. As a convenience this should return self.training_params()
at the end of training

	Parameters

	g (Game) – The game the agent is training on

	Returns

	The training params of the agent

	Return type

	tuple

	
train_episode(g, **kwargs)

	Single training iteration

	Parameters

	g (Game) – The game the agent is training on

	
training_params(g)

	Return the params that result from training

	Parameters

	g (Game) – The game the agent is training on

	
class core.Algorithm

	A basic abstraction for a class that finds an action to take in
a given state for a given player. Even if the algorithm is not stateful
it is still implemented as a class to provide a uniform interface.

Note

Despite this interface being almost identical to an agent, agents
can use multiple algorithms to come up with an action for a player to
execute in a game.

	
best_action(g, s, p)

	Return the best action given a state and player

	Parameters

	
	g (Game) – The game object

	s (any) – The current state of the game

	p (int) – The current player

	Returns

	The best action the algorithm can find

	Return type

	int

Agents

Agents are essentially actors that takes actions based on some heuristic, either randomly in the case of RandomAgent or based on some trained information, in the case of MCTSAgent.

	
class agents.RandomAgent

	Implementation of a random agent, which simply selects a random action
from the current action space each turn

	
class agents.HumanAgent

	Human agent, which waits for human input to determine what action to take.
Note that they should input an integer corresponding to the index of the
action they want to select

	
class agents.MinimaxAgent(**kwargs)

	Implementation of minimax which allows you to specify a cutoff horizon for the
search.

	
minimax

	Minimax – Algorithm that runs the minimax search

	
class agents.MCTSAgent

	Agent that uses Monte Carlo Tree Search (MCTS)

	
mcts

	MTCS – The mcts search class

Games

Games are the environments in which two players are pitted.

	
class games.TicTacToe

	Implements a 3x3 game of tictactoe, with state represented as an array of length 9.
Currently the implementation is somewhat brittle and cannot be extended to an nxn
board easily.

Examples

>>> TicTacToe().initial_state()
[-1, -1, -1, -1, -1, -1, -1, -1, -1]

>>> TicTacToe().to_readable_string([-1, 1, -1, 0, 0, -1, -1, 1, -1])
 | O |

 X | X |

 | O |

	
class games.LineTacToe

	Implements a 1x3 tictactoe-like, with state represented as an array of length 3.
The goal of the game is to get two consecutive xs or os. For example, [o, o, x]
is winning for o. Note that whoever starts the game should win, every time, as
going in the center will win the game. However this is a good game to test new
agent / algorithm implementations as the entire state space is only 11 states.

Examples

>>> LineTacToe().initial_state()
[-1, -1, -1]

Algorithms

Collection of useful AI algorithms

	
class algorithms.MCTS

	Implementation of a Monte Carlo Tree Search. We want to learn how to play
a game by keeping track of the best action in any state. We will do this
by propagating whether or not the current player won the game back up through
the game history. After enough iterations of game simulations we can choose
the best move based on this stored information

	
wins

	dict – A dictionary where the key is a tuple (player, state_hash)
and the value is the number of wins that occurred at that state for the
player. Note that the player represents whoever played the move in the state.

	
plays

	dict – A dictionary of the same format as wins which represents the
number of times the player made a move in the given state

	
best_action(g, s, p)

	Get the best action for a given player in a given game state

	Parameters

	
	g (Game) – The game

	s (state) – The current state of the game

	p (int) – The current player

	Returns

	The best action given the current knowledge of the game

	Return type

	int

	
execute_episode(g, nnet=None, c_punt=1.4)

	Execute a single iteration of the search and update the internal state
based on the generated examples

	Parameters

	
	g (Game) – The game

	nnet (Network) – Optional nework to be used for the policy instead
of a naive random playout

	c_punt (float) – The degree of exploration. Defaults to 1.4

	
monte_carlo_action(g, s, p, c_punt)

	Choose an action during self play based on the UCB1 algorithm. Instead of just
choosing the action that led to the most wins in the past, we choose the action
that balances this concern with exploration

	Parameters

	
	g (Game) – The game

	s (any) – The state of the game

	p (int) – The player who is about to make a move

	c_punt (float) – The degree of exploration

	Returns

	
	Tuple (best_move, expand), where playout is a boolean denoting

	whether or not the expansion phase has begun

	Return type

	tuple

	
pi(g, s)

	Return the favorability of each action in a given state

	Parameters

	
	g (Game) – The game

	s (any) – The state to evaluate

	Returns

	The favorabiltiy of each action

	Return type

	list of float

	
static random_playout(g, s, p, max_moves=1000)

	Perform a random playout and return the winner

	Parameters

	
	g (Game) – The game

	s (any) – The state of the game to start the playout from

	p (player) – The player whose turn it currently is

	max_moves (int) – Maximum number of moves before the function exits

	Returns

	The winner of the game, or -1 if there is not one

	Return type

	int

	
search(g, num_iters=100, verbose=False, nnet=None, c_punt=1.4)

	Play out a certain number of games, each time updating our win and play
counts for any state that we visit during the game. As we continue to
play, num_wins / num_plays for a given state should begin to converge on
the true optimality of a state

	Parameters

	
	g (Game) – Game to train on

	num_iters (int) – Number of search iterations

	verbose (bool) – Whether or not to render a progress bar

	nnet (Network) – Optional nework to be used for the policy instead
of a naive random playout

	c_punt (float) – The degree of exploration. Defaults to 1.4

	
search_episode(g, nnet=None, c_punt=1.4)

	We play a game by starting in the boards starting state and then
choosing a random move. We then move to the next state, keeping
track of which moves we chose. At the end of the game we go through
our visited list and update the values of wins and plays so that we
have a better understanding of which states are good and which are bad

	Parameters

	
	g (Game) – Game to search

	nnet (Network) – Optional nework to be used for the policy instead
of a naive random playout

	c_punt (float) – The degree of exploration. Defaults to 1.4

	Returns

	
	List of examples where each entry is of the format

	[player, state_hash, reward]

	Return type

	list

	
update(examples)

	Backpropagate the result of the training episodes

	Parameters

	examples (list) – List of examples where each entry is of the format
[player, state_hash, reward]

	
class algorithms.Minimax(horizon=inf)

	Implementation of the minimax algorithm.

	
horizon

	int – The max depth of the search. Defaults to infinity. Note that if this
is set then the game’s hueristic is used

	
best_action(g, s, p)

	Return the best action given a state and player

	Parameters

	
	g (Game) – The game object

	s (any) – The current state of the game

	p (int) – The current player

	Returns

	The best action the algorithm can find

	Return type

	int

	
max_play(g, s, p, depth)

	Get the largest value of all the child nodes

	Parameters

	
	g (Game) – The game

	s (any) – The state of the game upon execution

	p (int) – The current player (who is about to make a move)

	depth (int) – The current depth of the search tree

	Returns

	The largest value of all the child states

	Return type

	int

	
min_play(g, s, p, depth)

	Get the smallest value of all the child nodes

	Parameters

	
	g (Game) – The game

	s (any) – The state of the game upon execution

	p (int) – The current player (who is about to make a move)

	depth (int) – The current depth of the search tree

	Returns

	The smallest value of all the child states

	Return type

	int

Index

 A
 | B
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	action() (core.Agent method)

 	(core.Player method)

 	action_space() (core.Game method)

 	
 	Agent (class in core)

 	agent (core.Player attribute)

 	Algorithm (class in core)

 	Arena (class in core)

B

 	
 	best_action() (algorithms.MCTS method)

 	(algorithms.Minimax method)

 	(core.Algorithm method)

E

 	
 	execute_episode() (algorithms.MCTS method)

F

 	
 	flip_state() (core.Game method)

G

 	
 	Game (class in core)

 	
 	game (core.Arena attribute)

 	games_played (core.Arena attribute)

H

 	
 	horizon (algorithms.Minimax attribute)

 	
 	HumanAgent (class in agents)

I

 	
 	initial_state() (core.Game method)

L

 	
 	LineTacToe (class in games)

M

 	
 	max_play() (algorithms.Minimax method)

 	mcts (agents.MCTSAgent attribute)

 	MCTS (class in algorithms)

 	MCTSAgent (class in agents)

 	
 	min_play() (algorithms.Minimax method)

 	minimax (agents.MinimaxAgent attribute)

 	Minimax (class in algorithms)

 	MinimaxAgent (class in agents)

 	monte_carlo_action() (algorithms.MCTS method)

N

 	
 	next_state() (core.Game method)

P

 	
 	pi() (algorithms.MCTS method)

 	play_game() (core.Arena method)

 	play_games() (core.Arena method)

 	
 	Player (class in core)

 	player_id (core.Player attribute)

 	players (core.Arena attribute)

 	plays (algorithms.MCTS attribute)

R

 	
 	random_playout() (algorithms.MCTS static method)

 	
 	RandomAgent (class in agents)

 	reward() (core.Game method)

S

 	
 	search() (algorithms.MCTS method)

 	
 	search_episode() (algorithms.MCTS method)

 	statistics() (core.Arena method)

T

 	
 	terminal() (core.Game method)

 	TicTacToe (class in games)

 	to_hash() (core.Game method)

 	to_readable_string() (core.Game method)

 	
 	train() (core.TrainableAgent method)

 	train_episode() (core.TrainableAgent method)

 	TrainableAgent (class in core)

 	training_params() (core.TrainableAgent method)

U

 	
 	update() (algorithms.MCTS method)

W

 	
 	winner() (core.Game method)

 	
 	wins (algorithms.MCTS attribute)

 	(core.Arena attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to Game AI’s documentation!

 		
 Getting Started

 		
 Installation

 		
 Basic Example

 		
 Core

 		
 Agents

 		
 Games

 		
 Algorithms

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

